Databases for Many Majors

Queries in Access and SQL

Last Revision: July 2017

Introduction to Querying: Access and SQL 1

Tables

Note that Name is a reserved word in Access so the attribute in Students changed to SName.

= Student;\"'-.,_l
Id \ W Class - Major -
1111 Jeff Carter Junior Computer Science
2222 Anne Penny Senior Computer Science
3333 Fred Hopewell Freshman Math
4444 Andrew Spoth Junior English
5555 Valerie Dunbar Freshman Math
:D Course;\"-—.ﬂ_
CrsiD - CrsTitle - Credits =
CSE 220 Data Structures 2
CSE 303 Computation Theory 3
ENG 110 American Lit 2
ENG 476 Old English Lit 4
MAT 118 College Algebra 3
MAT 243 Calculus 3
== Tak;"-____
Id‘ - CrsiD =~ | Semester -
1111 CS5E 220 FA2010
1111 CSE 303 SP2010
2222 C5E 303 5P2010
2222 ENG 476 SP2010
3333 ENG 110 5P2010
3333 MAT 118 FA2010
3333 MAT 243 5P2010
4444 ENG 476 SP2010
4444 MAT 118 FA2010
5555 CSE 303 SP2010
5555 ENG 110 5P2010
5555 MAT 118 FA2010

Introduction to Querying: Access and SQL

Creating a Query in Access
Example Query — Which students took "College Algebra"?

Choose the Create tab and then Query Design:

=8 M B

Application Table Table SharePoint Query\ Query
Parts - Design Lists - Wizard \Design

Templates Tables Queries

e This brings up a popup: Show Table

Q - =
Home Create External Data Database Tools Design Q Tell me what y
> @D Union =+ € Insert Rows Ut Insert Columns = Property Sheet
QL O HAE k© 0= : M T
Vi Run Select Make Append Update Crosstab Delete g Pass-Through Show Delete Rows » Delete Columns Totals Parameters [1R (Mmes
iew
Tabl ; Tabl
- e I‘é Data Definition e :3\ Builder E Return: |All -
Results Query Type Query Setup Show/Hide
1" SECURITY WARNING Some active content has been disabled. Click for more details. Enable Content
All Tables @ « || Qe
Students 3
EA students : Table
Courses]
= courses: Table
B3 Take: Table Tables Queries Both
Courses
Students
Take
4
Field: ~
Table:
sort:
Show: 1 O [l O O
Criteria:
or:
4
B Add Close ||
Ready

Introduction to Querying: Access and SQL 3

e Add the tables that you need to answer the query: Courses, Take, Students

‘ iﬂ,j Query1

Courses

Take

Students

*

crsip
CrsTitle
Credits

% 1d
craip

Semester

% 1d
SMame

Class

Major

Note that Access visually shows the primary keys in gold and the primary-foreign key
relationships using links, which means that the query will be joining on these values.

Also, the 1 and co labels on the link between CrsID in Courses to CrsID in Take indicate that a
CrsID value may appear many times in Take and the CrsID from Take appears only 1 time in
Courses. (See the Conceptual Design visualization for more information.)

e Drag and drop the attributes/fields that you want to horizontally or vertically filter to
answer the query: The query asks to see all Student attributes in the result, so use the
* shortcut (just like SQL) to drag those attributes to the field part of the query
specification. Since the query requires horizontal filtering on the value of the CrsTitle,
drag that attribute as well.

‘iﬂ,-j CollegeAlgebraStudents

Courses Take Students
7 crsip ﬂ Id ¥ 1d
CrsTitle ¥ crsip sName
Credits Semester Class
Major
4
Field: éﬂants.“' CrsTitle
Tablg: [Students Courses
Soft:
Show [] []

Criteria:
or:

|="Co||ege Algebra®

e Select the Show box for attributes that you want to see in the result of the query:
Students. * shows all attributes of Students — Id, SName, Class, Major
e Specify Criteria for attributes to be horizontally filtered: Crs7itle = "College Algebra”

Introduction to Querying: Access and SQL 4

= hr) 3 y v Query Tools

e Save the query with a descriptive hame:

File Home Create External Data Database Tools

o+ 2 k@

Select Make Append Update Crosstab Delete

CollegeAlgebraStudents

e Run the query to see the results View Table
Results - Query Type
ﬁ CollegeAlgebraStudents
Id - SMName = Class - Major -
3333 Fred Hopewell Freshman Math
4444 Andrew Spoth Junior English
5555 Valerie Dunbar Freshman Math

SQL:

select S.ld, S.Name, S.Class, S.Major
from Courses C, Take T, Students S
where C.Crsld =T. Crsld and

T.Id =S.ld and

C.CrsTitle = "College Algebra"

The remainder of this document will show the screen captures from Access along with the
corresponding SQL in MySQL to compute the answer to the queries in the Introduction to
Querying animation.

Note: The graphical interface for designing queries in Access is known as Access
QBE — Query By Example. In Access, this view is called the Design View. When you
Run a query, it shows the Datasheet View. The View Menu for a query also
indicates that there is an SQL View. You can see the generated SQL for the
graphically designed query. Some queries cannot be represented graphically so
you can choose to answer the query only using SQL.

”| Datasheet View

SQL sat View

D" pesign View

Below is a screen capture of the Access SQL View for the CollegeAlgebraStudents query:

]@ CollegeAlgebraStudents

SELECT Students.™
FROM Students INMER JOIM (Courses INMER JOIM Take OMN Courses.CrsiD = Take.CrsID) OM Students.ld = Take.ld
WHERE (((Courses.CrsTitle)="College Algebra");

In this query, Access SQL is using the JOIN in the FROM clause. The JOIN is prefixed by the
word INNER, which represents the default type of JOIN. Other types of joins are advanced
SQL topics and are beyond the coverage of the visualizations. The SQL also shows extra
parentheses in the WHERE clause, which are unnecessary and somewhat typical in generated
code.

Introduction to Querying: Access and SQL 5

Topic: Query

Subtopic: Query | Example
Query: Find the semester that "Jeff Carter" took "CSE 303"

Access:
3 SemesterJeffCarterTookCSE303 |
Students Take
% 1d - 2| %ud
SMame i CrsiD
Class Semester
Major
4
Field: | Semester SMame CrsiD
Table: |Take Students Take
Sort:
Show: [] []
Criteria: ="Jeff Carter" l="CSE 303"
or:
4
SQL:

select T.Semester
from Students S, Take T
where S.lId =T.ld and

S.Name = "Jeff Carter" and

T.CrsID = "CSE 303"

Results:

] SemesterJeffCarterTookCSE303 |

Semester =

5P2010|
#*

Introduction to Querying: Access and SQL

Topic: Sets
Subtopic: Sets | Intro
Query: CSE returns unique Id of Students taking CSE courses
Access:
e Criteria for CrsID: LIKE "CSE*"

. Sheet: Unique Values: Yes
Create External Data Database Tools Design Q Tell me wh. o do
222 l 1 . +| " ‘ = ' @D Union e 2 insert Rows 1 Insert Columns z r—'
SIS A = | * #! B0 b | G
View Run Select Makc‘ Append Update Crosstab Delete (5 Pass-Through Show % Delete Rows Delete Columns Totals Parameters 2 Table Names
- Table B¢ Data Definition fable SN Builder I Return: Al
Results Query Type Query Setup Show/Hide
| T cse ~
Property Sheet
Take Selection type: Query Properties
General
7 1d Description
% crsiD Default View Datasheet
Output All Fields Mo
Semester Top Values All
Unigque Records Mo
+ | Source Database (current)
1 ' Source Connect Str
Record Locks MNo Locks
Recordset Type Dynaset
Field: | id ODBC Timeaut 60
Table: |Take Filter
Sart Order By
show: - D Max Records
Critera: fike *cse Orientation Left-to-Right
or: Subdatasheet Mame
Link Child Fields
Link Master Fields
Subdatasheet Height o
Subdatasheet Expanded Mo
Filter On Load MNa
Order By On Load Ves
1 3

SQL: The keyword distinct provides unique values in the result.
In SQL, a named query is represented as a view, which is defined once and re-executed when
referenced. Note that MySQL uses the % sign as the wildcard to match the rest of the string.

create view CSE as

select distinct ID

from Take

where CrsID LIKE "CSE%";

Results: Similarly, for students taking MAT courses.
Ii,: e |§ MAT
ld = ld .t
1111 3333
5555 5555

Introduction to Querying: Access and SQL 7

Subtopic: Sets | Union
Query: Id of students who took CSE or MAT courses

Access: Union Query

Access QBE does not support set operations: union, negation, intersection.
However, Access does support the specification of the union query in SQL.

Query Tools Stug

External Data Database Tools Design Q@

C| +' #1 Update
- L]

AT,
Make Append [Crosstab =/ Pass-Through
Table

!7‘; Delete B# Data Definition

Query Type
] =¥ CSEunionMAT \

select * from CSE
union
select * from MAT

SQL: Note that the * symbol represents a shortcut for selecting ALL attributes from a table,
which is just Id in this example.

select * from CSE
union
select * from MAT;

Result:

3 CSEunionMAT \

Id -
1111
2222
3333
4444
5555

Introduction to Querying: Access and SQL 8

Subtopic: Sets | Negation
Query: Ids of students who have taken CSE courses and not MAT courses

Access:

Negation set-based queries are not inherently supported in Access QBE or Access SQL.
However, there are typically multiple ways of answering a query. In SQL, shown below, nested
queries provide an alternative to answering a negation query — asking for those students who
took CSE that are not in the subquery asking for the students who took MAT. For the shown
Access SQL query, CSEnotMAT, there is a Design View available that represents a hybrid query
between Access QBE and Access SQL.

Access SQL Access QBE
*H CSEnotMAT 3 CSEnotMAT
select * ot
from CSE

where Id not in (select Id from MAT):
|

Field: |[Id] 7
Table: |CSE
Sort:

Show: |:|
Criteria: |Naot In (select Id from MAT)
SQL:
select * from CSE select *
except from CSE
select * from MAT; where Id not in (select Id from MAT);
Result:

*H CSEnotMAT
Id -

1111
2222

Introduction to Querying: Access and SQL 9

Subtopic: Sets | Intersection

Query: Ids of students who have taken CSE courses and MAT courses

Access:

Intersection queries are not inherently supported in Access QBE or Access SQL. However,
there are typically multiple ways to find an answer to a query. In this case, the same result
can be obtained by joining CSE and MAT so that the value of the Id attributes are equal.

e On the Show Table popup, choose the Queries tab and then select both CSE and MAT
e To join on Id, select the Id attribute in CSE and drag it to the Id attribute in MAT

Tables oth

Col lgebraStudents

CSEandMAT
CSEunionMAT

File Home

R
View un

Create External Data Database Tools Design

D ! Ej I:! +! # Update @D Union

i
Select Make Append ECrosstab {27 Pass-Through

Table

!)\ Delete l;_{; Data Definition
Results Query Type
» || ¥ csEandmAT,
CSE MAT
L — —_— Id
4
Field: |1d B
Table: |CSE
Sort:
@ Show: I I
E Criteria:
= or:

SQL: There are multiple ways of answering this query in SQL including using a nested query:

select * from CSE
intersect
select * from MAT;

select *
from CSE natural join MAT;

select *
from CSE
where Id in (select Id from MAT);

Result:

% CSEandMAT

Id -
5555

Introduction to Querying: Access and SQL

10

Topic: Filtering
Subtopic: Filtering | Horizontal
Query: Find the students who are "Math" majors

Access:

@ HorizontalFiltering:MathMajors

Students
% 1d
SMName
Class
Major
4
Field: |1d SMame Class Major
Table: |Students Students Students Students
Sort:
Show:
Criteria: |="Math"

ar

SQL: Recall that the * symbol represents a shortcut for selecting ALL attributes from a table.

select *
from Students
where Major = "Math";

Result:

| §| HorizontalFiltering:MathMajors

Id - SName - Class
3333 Fred Hopewell Freshman
5555 Valerie Dunbar Freshman

Introduction to Querying: Access and SQL

Major -
Math
Math

11

Subtopic: Filtering | Vertical
Query: Retrieve the Name and Class of all students

Access:

| @ VerticalFiItering:StudentNameCIass."'-..__

Students

7 1d
SMName
Class

Major

Field: | SName Class|
Table: |Students tudents
Sort:

Show:

Criteria:

ass

ar:

SQL:

select Name, Class
from Students;

Result:

SName - Class
Jeff Carter Junior
Anne Penny Senior

Fred Hopewell Freshman
Andrew Spoth Junior

Valerie Dunbar Freshman

Introduction to Querying: Access and SQL

@ VerticaIFiItering:StudentNameCIassl"‘-._

-

12

Subtopic: Filtering | Combined
Query: Find the Name and class of students who are "Math" majors

Access:

ﬁ CnmbinedFiItering:MathNameCIass.."'-.,_l

Students

% 1d
SMame
Class
Majaor

Field: [SMName Class Major
Table: |Students Students Students
Sort:
Show: []
Criteria: ="Math"
or:

SQL:

select Name, Class
from Students
where Major = "Math";

Result:

@ CnmbinedFiItering:MathNameCIas;.."'-.,_l
SName = Class -
Fred Hopewell Freshman
Valerie Dunbar Freshman

Introduction to Querying: Access and SQL 13

Topic: Joining

Subtopic: Joining | CartesianProduct

Query: Illustrating a Cartesian product of students who have taken a MAT course with a table
representing the vertical filtering of Id and Course on the StudentsTakingCourses table.

Access:
] NameldStudentsMAT |2 TakesMaTCourse 5 CartesianProduct
Students Take Take NameldStudentsMAT TakesMATCourse
9w = \? d 3) SName Tid
Major Semester
. 4
s shame. s o ol [T T Fetd: [suame w s
Sort: | < sort: || v Table: T T | TakesMATCourse TakesMATCourse
Show: =] Show:] M sort:
Cr\ter\ai Like "MAT*" Criteria: Like "MAT" . 5th°W1
SQL:
create view NameldStudentsMAT as create view TakesMATCourse as
select distinct S.SName, S.Id as Sld select Id as Tld, Course
from StudentsTakingCourses T, Students S from StudentsTakingCourses
where Course LIKE "MAT%" and T.Id = S.Id; where Course LIKE "MAT%";
select *
from NameldStudentsMAT, TakesMATCourse;
Result:
@ NameldStudentsMAT @ TakesMATCourse T CartesianProduct
SName - sid o Tid - CrsiD - SName - sid - Tid - CrsiD
3333 MAT 118 Fred Hopewell 3333 3333 MAT 118
Fred Hopewell 3333 3333 MAT 243 Fred Hopewell 3333 3333 MAT 243
Andrew Spoth 4444 4444 MAT 118 Fred Hopewell 3333 4444 MAT 118
Valerie Dunbar 5555 5555 MAT 118 Fred Hopewell 3333 5555 MAT 118
Andrew Spoth 4444 3333 MAT 118
Andrew Spoth 4444 3333 MAT 243
Andrew Spoth 4444 4444 MAT 118
Andrew Spoth 4444 5555 MAT 118
Valerie Dunbar 5555 3333 MAT 118
Valerie Dunbar 5555 3333 MAT 243
Valerie Dunbar 5555 4444 MAT 118
Valerie Dunbar 5555 5555 MAT 118
Introduction to Querying: Access and SQL 14

Subtopic: Joining | Join
Query: Illustrating a join of students who have taken a MAT course with a table representing
the vertical filtering of Id and CrsId on the Take table.

Access: To join on SId and TId, drag SId to TId to create the join link.

@ Join
MNameldStudentsMAT TakesMATCourse
SMame Tid
Sld f CrsiD
4
Field: | SMame Sid Tid CrsiD
Table: [NameldStudentsMAT | NameldStudentsMAT | TakesMATCourse TakesMATCourse
Sort:
Show:
Criteria:
SQL:
select *

from NameldStudentsMAT join TakesMATCourse on Sld = Tid;

Result:
= Join\
SName - Sid Tid = EsiD
Fred Hopewell 3333 3333 MAT 118
Fred Hopewell 3333 3333 MAT 243
Andrew Spoth 4444 4444 MAT 118
Valerie Dunbar 5555 5555 MAT 118

Introduction to Querying: Access and SQL 15

Subtopic: Joining | Naturaljoin

A natural join is a shortcut for joining two tables such that the columns with the same name
are equal, including only one copy of that attribute in the result. Therefore, this shortcut is
available in SQL. In Access QBE, you would not show the extra attribute. Assuming that the Id
attributes of NameldStudentsMAT and TakesMATCourse are renamed to be the same:

SQL:

select *
from NameldStudentsMAT natural join TakesMATCourse;

Result:

| iﬂ:l NaturalJoin

SName = Id - CrsiD -
Fred Hopewell 3333 MAT 118
Fred Hopewell 3333 MAT 243
Andrew Spoth 4444 MAT 118
Valerie Dunbar 5555 MAT 118

Introduction to Querying: Access and SQL 16

Topic: SQL
Subtopic: SQL | Select

Access: see Subtopic: Query | Example for Access screenshots
SQL:

select T.Semester

from Students S, Take T

where S.Id=T.ld and
S.Name = "Jeff Carter" and
T.CrsID = "CSE 303"

Subtopic: SQL | Sets
Access: see Topic: Sets for Access screenshots of Union, Negation, and Intersection

SQL:

Assuming that the views of CSE and MAT are defined, the following represents specifications
in the SQL standard for:

e Union

select * from CSE
union
select * from MAT

e Negation

select * from CSE
except
select * from MAT

e Intersection

select * from CSE
intersect
select * from MAT

MySQL does not support except and intersect. See Subtopic: Sets | Negation
and Subtopic: Sets | Intersection for the associated MySQL.

Introduction to Querying: Access and SQL 17

Subtopic: SQL | Postscript

Concept: Ordering

In practice, it is very important to order the results returned by a query for ease of
interpretation. In SQL, there is an order by clause to order the results of the query. The default
ordering of the listed attributes is ascending order when no keyword is specified. To change
the ordering to descending, use the keyword desc.

SQL.:

select *
from Students
order by Major desc;

Access:

Access also has the ability to order the results. Use the drop-down box under Sort to choose
Ascending or Descending.

’.jt StudentsMajorDesc

Students

¥ 1d
SName
Class

Major

Field: | SName Id Class Major

Table; | Students Students Students Studen
G
o | % = = '

Critenia:
o

Results:

’.jt StudentsMajorDesc

SName - Id - Class - Major -
Valerie Dunbar 5555 Freshman Math
Fred Hopewell 3333 Freshman Math
Andrew Spoth 4444 Junior English
Anne Penny 2222 Senior Computer Science
leff Carter 1111 Junior Computer Science

Introduction to Querying: Access and SQL 18

Concept: Counting

Besides ordering of results, there are additional features to answering queries that are very
important in practice. The visualization illustrates a counting query, which finds the number of
tuples in the table:

e count(*) indicates to count all of the tuples in the table
e as numberOfTuples is renaming the column to a meaningful name, since the name of the
counting column is not part of the SQL standard and will vary.

SQL.:

select count(*) as numberOfTuples
from Students;

Access:

Access also has the ability to count. To see the Total row, under Query Design, select the 3
Totals. Then use the drop-down box under Total to choose Count.

| +I # Update @D Union == €= Insert Rows Tt Insert Columns E T
9 = _ = |
Make Append | Crosstab 57 Pass-Through Show » Delete Columns Totals
Table ; Table . XYZ
: !,, Delete B# Data Definition ‘ =%, Builder i Returm: | A =
Query Type Query Setup Showy/Hide
:.jt StudentsCount
Students
W 1d
SName
Class
Major
'l
Field: hd o
Table: | Students
Sor:
show: & O O O O O

Critena:
or

Results: Note that Access named the column CountOfId. You can rename columns in Access
by prefixing the field with the newname:

Field: humberOf‘TuplF:: Id |~

— Table: | Students
¥ StudentsCount Total: | Count

CountOfld - Sort:

g Show: ~
Criteria:

Introduction to Querying: Access and SQL 19

Concept: Aggregation

The count operator is an example of an aggregation operator. The term “aggregation” refers
to providing an “aggregate” or “one” answer based on the details. The other aggregate
operators in SQL are: min, max, avg, and sum. These operators are typically performed on
a numeric attribute to find the associated minimum, maximum, average, and sum. In the
schema of the visualization, there is only one numeric column — the number of credits for each
course. The following query finds the min, max, avg, and sum of the credits over the entire
Courses table:

SQL:

select min(Credits) as mincredits, max(Credits) as maxcredits,
avg(Credits) as avgcredits, sum(Credits) as sumcredits

from Courses

What if you wanted to find the total number of credits taken by each student? This type of
query requires performing an aggregation over only parts of the information — called groups.
SQL uses a group by clause to create these groups:

select Id, sum(Credits) as totalcredits
from Takes natural join Courses
group by Id;

To visualize each group based on the Id value, consider the following related query:

select Id, Credits
from Takes natural join Courses

order by Id;
select Id, Credits select Id, sum(Credits) as totalcredits
from Takes natural join Courses order by Id from Takes natural join Courses group by Id
Id Credits Id totalcredits
1111 2
1111 3 1111 5
2222 3
2227 4 2222 7
3333 3
3333 2 3333 8
3333 3
4444 4
2444 3 4444 7
5555 3
5555 2 5555 8
5555 3

Introduction to Querying: Access and SQL 20

Access:

Access also has the ability to aggregate over groups. To see the Total row, under Query
Design, select the 3 Totals.

e Drag the Id attribute from Take to the Field window. Under the Total drop down, select
Group By

e Drag the Credits attribute from Courses to the Field window. Under the Total drop
down, select Sum.

e Rename the result of the sum by prefixing the column name with totalcredits:

External Data Database Tools Design Q Tell me what you want to do.. Suzanne Dietrich

_| +' #! Update @D Union E (3': Insert Rows Ut Insert Columns I
L]

Make. Append E Crosstab H@H Pass-Through Show Delete Rows L,,\-J Delete Columns
Table ; Table Xy7
!7,\- Delete I.IEL{_‘ Data Definition 1_:*_:_\ Builder L Return: |All -

CQuery Type Query Setup Show/Hide ~

@ StudentsTotalCredits =

Courses Take

* *

% creip % 1d
CrsTitle _\"—" # crsip

Credits Semester
a4 3
Field: |Id otalcredits: Credits
Table: |Take Courses
<TG [Group By S —_
Sort:
Show:]] O]]
Criteria:
ar:

Introduction to Querying: Access and SQL 21

Topic: Checkpoint

The Checkpoint section provides formative self-assessment to check your understanding of the
concepts presented in the visualization. The checkpoint includes the following queries if you
want to work them out in Access or MySQL:

Assuming that the desired attribute in the result is Id, find the students who have taken
"MAT 118"?

Assuming that the desired attribute in the result is Id, find the students who are
seniors, given by the classification "Senior"?

Assuming that the desired attribute in the result is Credits, find the number of credits
for the course titled "College Algebra"?

Assuming that the desired attribute in the result is Semester, find the semesters that
the course titled "College Algebra" has been offered?

Assuming that the desired attribute in the result is Name, find the students who have
taken "MAT 118"?

Assuming that the desired attribute in the result is Name, find the students who have
taken "College Algebra"?

Find the students along with the courses that they have taken, returning all attributes.

Introduction to Querying: Access and SQL 22

Introduction to Querying: Summary

Terminology Symbol Access SQL
projection; T v in “show” box select
vertical filter
selection; o “criteria” where
horizontal filter
which tables are Add Table from
needed
Cartesian product X commas in “from” clause
(natural) join X automatic condition in “where” clause
(links shown in (may need to prefix attribute
relationships diagram) | names!)
union U “or” in “criteria” “or” in “where” clause;
union
intersection N “and” in “criteria” “and” in “where” clause;
intersect
negation - “and not” in “criteria” “and not” in “where”;

except

Introduction to Querying: Access and SQL

23

	Tables
	Creating a Query in Access
	Topic: Query
	Subtopic: Query | Example

	Topic: Sets
	Subtopic: Sets | Intro
	Subtopic: Sets | Union
	Subtopic: Sets | Negation
	Subtopic: Sets | Intersection

	Topic: Filtering
	Subtopic: Filtering | Horizontal
	Subtopic: Filtering | Vertical
	Subtopic: Filtering | Combined

	Topic: Joining
	Subtopic: Joining | CartesianProduct
	Subtopic: Joining | Join
	Subtopic: Joining | NaturalJoin

	Topic: SQL
	Subtopic: SQL | Select
	Subtopic: SQL | Sets
	Subtopic: SQL | Postscript
	Concept: Ordering
	Concept: Counting
	Concept: Aggregation

	Topic: Checkpoint
	Introduction to Querying: Summary

