
Introduction to Querying: Access and SQL 1

Last Revision: July 2017

Databases for Many Majors

Queries in Access and SQL

Introduction to Querying: Access and SQL 2

Tables

Note that Name is a reserved word in Access so the attribute in Students changed to SName.

Introduction to Querying: Access and SQL 3

Creating a Query in Access

Example Query – Which students took "College Algebra"?

Choose the Create tab and then Query Design:

 This brings up a popup: Show Table

Introduction to Querying: Access and SQL 4

 Add the tables that you need to answer the query: Courses, Take, Students

Note that Access visually shows the primary keys in gold and the primary-foreign key

relationships using links, which means that the query will be joining on these values.

Also, the 1 and ∞ labels on the link between CrsID in Courses to CrsID in Take indicate that a

CrsID value may appear many times in Take and the CrsID from Take appears only 1 time in

Courses. (See the Conceptual Design visualization for more information.)

 Drag and drop the attributes/fields that you want to horizontally or vertically filter to

answer the query: The query asks to see all Student attributes in the result, so use the

* shortcut (just like SQL) to drag those attributes to the field part of the query

specification. Since the query requires horizontal filtering on the value of the CrsTitle,

drag that attribute as well.

 Select the Show box for attributes that you want to see in the result of the query:

Students.* shows all attributes of Students – Id, SName, Class, Major

 Specify Criteria for attributes to be horizontally filtered: CrsTitle = "College Algebra"

Introduction to Querying: Access and SQL 5

 Save the query with a descriptive name:

 CollegeAlgebraStudents

 Run the query to see the results

SQL:

select S.Id, S.Name, S.Class, S.Major

from Courses C, Take T, Students S

where C.CrsId = T. CrsId and

 T.Id = S.Id and

 C.CrsTitle = "College Algebra"

The remainder of this document will show the screen captures from Access along with the

corresponding SQL in MySQL to compute the answer to the queries in the Introduction to

Querying animation.

Note: The graphical interface for designing queries in Access is known as Access

QBE – Query By Example. In Access, this view is called the Design View. When you

Run a query, it shows the Datasheet View. The View Menu for a query also

indicates that there is an SQL View. You can see the generated SQL for the

graphically designed query. Some queries cannot be represented graphically so

you can choose to answer the query only using SQL.

Below is a screen capture of the Access SQL View for the CollegeAlgebraStudents query:

In this query, Access SQL is using the JOIN in the FROM clause. The JOIN is prefixed by the

word INNER, which represents the default type of JOIN. Other types of joins are advanced

SQL topics and are beyond the coverage of the visualizations. The SQL also shows extra

parentheses in the WHERE clause, which are unnecessary and somewhat typical in generated

code.

Introduction to Querying: Access and SQL 6

Topic: Query

Subtopic: Query | Example

Query: Find the semester that "Jeff Carter" took "CSE 303"

Access:

SQL:

select T.Semester

from Students S, Take T

where S.Id = T.Id and

 S.Name = "Jeff Carter" and

 T.CrsID = "CSE 303"

Results:

Introduction to Querying: Access and SQL 7

Topic: Sets

Subtopic: Sets | Intro

Query: CSE returns unique Id of Students taking CSE courses

Access:

 Criteria for CrsID: LIKE "CSE*"

 Property Sheet: Unique Values: Yes

SQL: The keyword distinct provides unique values in the result.
In SQL, a named query is represented as a view, which is defined once and re-executed when
referenced. Note that MySQL uses the % sign as the wildcard to match the rest of the string.

create view CSE as

select distinct ID

from Take

where CrsID LIKE "CSE%";

Results: Similarly, for students taking MAT courses.

Introduction to Querying: Access and SQL 8

Subtopic: Sets | Union

Query: Id of students who took CSE or MAT courses

Access: Union Query

Access QBE does not support set operations: union, negation, intersection.

However, Access does support the specification of the union query in SQL.

SQL: Note that the * symbol represents a shortcut for selecting ALL attributes from a table,

which is just Id in this example.

select * from CSE
union
select * from MAT;

Result:

Introduction to Querying: Access and SQL 9

Subtopic: Sets | Negation

Query: Ids of students who have taken CSE courses and not MAT courses

Access:

Negation set-based queries are not inherently supported in Access QBE or Access SQL.

However, there are typically multiple ways of answering a query. In SQL, shown below, nested

queries provide an alternative to answering a negation query – asking for those students who

took CSE that are not in the subquery asking for the students who took MAT. For the shown

Access SQL query, CSEnotMAT, there is a Design View available that represents a hybrid query

between Access QBE and Access SQL.

Access SQL Access QBE

SQL:

select * from CSE
except
select * from MAT;

select *
from CSE
where Id not in (select Id from MAT);

Result:

Introduction to Querying: Access and SQL 10

Subtopic: Sets | Intersection

Query: Ids of students who have taken CSE courses and MAT courses

Access:

Intersection queries are not inherently supported in Access QBE or Access SQL. However,

there are typically multiple ways to find an answer to a query. In this case, the same result

can be obtained by joining CSE and MAT so that the value of the Id attributes are equal.

 On the Show Table popup, choose the Queries tab and then select both CSE and MAT

 To join on Id, select the Id attribute in CSE and drag it to the Id attribute in MAT

SQL: There are multiple ways of answering this query in SQL including using a nested query:

select * from CSE
intersect
select * from MAT;

select *
from CSE natural join MAT;

select *
from CSE
where Id in (select Id from MAT);

Result:

Introduction to Querying: Access and SQL 11

Topic: Filtering

Subtopic: Filtering | Horizontal

Query: Find the students who are "Math" majors

Access:

SQL: Recall that the * symbol represents a shortcut for selecting ALL attributes from a table.

select *
from Students

where Major = "Math";

Result:

Introduction to Querying: Access and SQL 12

Subtopic: Filtering | Vertical

Query: Retrieve the Name and Class of all students

Access:

SQL:

select Name, Class
from Students;

Result:

Introduction to Querying: Access and SQL 13

Subtopic: Filtering | Combined

Query: Find the Name and class of students who are "Math" majors

Access:

SQL:

select Name, Class
from Students
where Major = "Math";

Result:

Introduction to Querying: Access and SQL 14

Topic: Joining

Subtopic: Joining | CartesianProduct

Query: Illustrating a Cartesian product of students who have taken a MAT course with a table

representing the vertical filtering of Id and Course on the StudentsTakingCourses table.

Access:

SQL:

create view NameIdStudentsMAT as
select distinct S.SName, S.Id as SId
from StudentsTakingCourses T, Students S
where Course LIKE "MAT%" and T.Id = S.Id;

create view TakesMATCourse as
select Id as TId, Course
from StudentsTakingCourses
where Course LIKE "MAT%";

select *
from NameIdStudentsMAT, TakesMATCourse;

Result:

Introduction to Querying: Access and SQL 15

Subtopic: Joining | Join

Query: Illustrating a join of students who have taken a MAT course with a table representing

the vertical filtering of Id and CrsId on the Take table.

Access: To join on SId and TId, drag SId to TId to create the join link.

SQL:

select *
from NameIdStudentsMAT join TakesMATCourse on SId = TId;

Result:

Introduction to Querying: Access and SQL 16

Subtopic: Joining | NaturalJoin

A natural join is a shortcut for joining two tables such that the columns with the same name

are equal, including only one copy of that attribute in the result. Therefore, this shortcut is

available in SQL. In Access QBE, you would not show the extra attribute. Assuming that the Id

attributes of NameIdStudentsMAT and TakesMATCourse are renamed to be the same:

SQL:

select *
from NameIdStudentsMAT natural join TakesMATCourse;

Result:

Introduction to Querying: Access and SQL 17

Topic: SQL

Subtopic: SQL | Select

Access: see Subtopic: Query | Example for Access screenshots

SQL:

select T.Semester

from Students S, Take T

where S.Id = T.Id and

 S.Name = "Jeff Carter" and

 T.CrsID = "CSE 303"

Subtopic: SQL | Sets

Access: see Topic: Sets for Access screenshots of Union, Negation, and Intersection

SQL:

Assuming that the views of CSE and MAT are defined, the following represents specifications

in the SQL standard for:

 Union

select * from CSE

union

select * from MAT

 Negation

select * from CSE

except

select * from MAT

 Intersection

select * from CSE

intersect

select * from MAT

MySQL does not support except and intersect. See Subtopic: Sets | Negation

and Subtopic: Sets | Intersection for the associated MySQL.

Introduction to Querying: Access and SQL 18

Subtopic: SQL | Postscript

Concept: Ordering

In practice, it is very important to order the results returned by a query for ease of

interpretation. In SQL, there is an order by clause to order the results of the query. The default

ordering of the listed attributes is ascending order when no keyword is specified. To change

the ordering to descending, use the keyword desc.

SQL:

select *

from Students

order by Major desc;

Access:

Access also has the ability to order the results. Use the drop-down box under Sort to choose

Ascending or Descending.

Results:

Introduction to Querying: Access and SQL 19

Concept: Counting

Besides ordering of results, there are additional features to answering queries that are very

important in practice. The visualization illustrates a counting query, which finds the number of

tuples in the table:

 count(*) indicates to count all of the tuples in the table

 as numberOfTuples is renaming the column to a meaningful name, since the name of the

counting column is not part of the SQL standard and will vary.

SQL:

select count(*) as numberOfTuples

from Students;

Access:

Access also has the ability to count. To see the Total row, under Query Design, select the ∑

Totals. Then use the drop-down box under Total to choose Count.

Results: Note that Access named the column CountOfId. You can rename columns in Access

by prefixing the field with the newname:

Introduction to Querying: Access and SQL 20

Concept: Aggregation

The count operator is an example of an aggregation operator. The term “aggregation” refers

to providing an “aggregate” or “one” answer based on the details. The other aggregate

operators in SQL are: min, max, avg, and sum. These operators are typically performed on

a numeric attribute to find the associated minimum, maximum, average, and sum. In the

schema of the visualization, there is only one numeric column – the number of credits for each

course. The following query finds the min, max, avg, and sum of the credits over the entire

Courses table:

SQL:

select min(Credits) as mincredits, max(Credits) as maxcredits,

 avg(Credits) as avgcredits, sum(Credits) as sumcredits

from Courses

What if you wanted to find the total number of credits taken by each student? This type of

query requires performing an aggregation over only parts of the information – called groups.

SQL uses a group by clause to create these groups:

select Id, sum(Credits) as totalcredits

from Takes natural join Courses

group by Id;

To visualize each group based on the Id value, consider the following related query:

select Id, Credits

from Takes natural join Courses

order by Id;

select Id, Credits
from Takes natural join Courses order by Id

 select Id, sum(Credits) as totalcredits
from Takes natural join Courses group by Id

Id Credits Id totalcredits

1111 2
1111 5

1111 3

2222 3
2222 7

2222 4

3333 3

3333 8 3333 2

3333 3

4444 4
4444 7

4444 3

5555 3

5555 8 5555 2

5555 3

Introduction to Querying: Access and SQL 21

Access:

Access also has the ability to aggregate over groups. To see the Total row, under Query

Design, select the ∑ Totals.

 Drag the Id attribute from Take to the Field window. Under the Total drop down, select

Group By

 Drag the Credits attribute from Courses to the Field window. Under the Total drop

down, select Sum.

 Rename the result of the sum by prefixing the column name with totalcredits:

Introduction to Querying: Access and SQL 22

Topic: Checkpoint

The Checkpoint section provides formative self-assessment to check your understanding of the

concepts presented in the visualization. The checkpoint includes the following queries if you

want to work them out in Access or MySQL:

 Assuming that the desired attribute in the result is Id, find the students who have taken

"MAT 118"?

 Assuming that the desired attribute in the result is Id, find the students who are

seniors, given by the classification "Senior"?

 Assuming that the desired attribute in the result is Credits, find the number of credits

for the course titled "College Algebra"?

 Assuming that the desired attribute in the result is Semester, find the semesters that

the course titled "College Algebra" has been offered?

 Assuming that the desired attribute in the result is Name, find the students who have

taken "MAT 118"?

 Assuming that the desired attribute in the result is Name, find the students who have

taken "College Algebra"?

 Find the students along with the courses that they have taken, returning all attributes.

Introduction to Querying: Access and SQL 23

Introduction to Querying: Summary

Terminology Symbol Access SQL

projection;
vertical filter

π √ in “show” box select

selection;
horizontal filter

σ “criteria” where

which tables are
needed

 Add Table from

Cartesian product

X commas in “from” clause

(natural) join

⋈ automatic
(links shown in
relationships diagram)

condition in “where” clause
(may need to prefix attribute
names!)

union

⋃ “or” in “criteria” “or” in “where” clause;
union

intersection

⋂ “and” in “criteria” “and” in “where” clause;
intersect

negation

- “and not” in “criteria” “and not” in “where”;
except

	Tables
	Creating a Query in Access
	Topic: Query
	Subtopic: Query | Example

	Topic: Sets
	Subtopic: Sets | Intro
	Subtopic: Sets | Union
	Subtopic: Sets | Negation
	Subtopic: Sets | Intersection

	Topic: Filtering
	Subtopic: Filtering | Horizontal
	Subtopic: Filtering | Vertical
	Subtopic: Filtering | Combined

	Topic: Joining
	Subtopic: Joining | CartesianProduct
	Subtopic: Joining | Join
	Subtopic: Joining | NaturalJoin

	Topic: SQL
	Subtopic: SQL | Select
	Subtopic: SQL | Sets
	Subtopic: SQL | Postscript
	Concept: Ordering
	Concept: Counting
	Concept: Aggregation

	Topic: Checkpoint
	Introduction to Querying: Summary

